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CCXCVI.-Remarks on the Electrical and Mechanical 
Conditions in the Neighbourhood of a Dissolved Ion. 

By CHRISTOPHER KELK INGOLD. 

THE calculations to  be summarised below arose in connexion with 
certain work on the electrolytic equilibria of acids (this vol., p. 2163), 
and again in the course of some studies on the dynamics of the 
saponification of esters (this vol., p. 2170) ; and other applications 
can be foreseen. Reference may be made to these papers for the 
general introductory remarks which might have been included here. 

The problem is to  calculate the effect of the radially oriented and 
attracted solvent molecules surrounding an ion on the local electrical 
conditions. We shall find that the calculation necessarily includes a 
consideration of the local mechanical conditions. 

For the purposes of the electrical calculation we may define an 
“ ideal state ” as follows : (1) the solvent is unassociated; (2) its 
molecules are optically and electrically isotropic ; (3) the local inner 
field (Raman) is isotropic ; (4) the solvent is incompressible. We 
may assume that if conditions (1)’ (2), and (3) be fulfilled Mosotti’s 
law will be obeyed ; the non-fulfilment of (1) is the main cause, whilst 
departures from (2) and from (3) are subsidiary causes, of deviations 
from Mosotti’s principle. An “ ideal ” solvent may, therefore, also 
be defined as one which obeys Mosotti’s law and is incompressible. 

We shall have to envisage deviations from all these conditions, 
but it is convenient to  assume their fulfilment in the first instance in 
order to  obtain a point of departure. 

We require to  evaluate the potential @ in the environment of an 
ion because then we can derive the mutual potential energy of two 
neighbouring ions, and this is what is required in problems on ionic 
reactions. The principles of the calculation under “ ideal ” con- 
ditions are well known (Debye, “ Polar Molecules,” 1929). On 
account of Gauss’s theorem we have 

D = q / r 2 .  . . . . . . (1) 

where D is the induction at  any field-point, g the charge on the ion, 
and T the distance of the point from the charge. The electric 
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intensity, Id, and the inner field, .a', are given by the field-equations 
D = E + 4 n I  . . . . . .  (a )  

(3) P = E + y l .  . . . . .  4 .  

where 7 is the intensity of polarisation. The vectors of D, E,  F ,  1, 
and r correspond in direction at all poin1,s. The further equation 
necessary for the calculation of the four clectrical vectors in terms 
of r is found in Debye's relation between I and P : 

Here, p is the electric moment of a molecule, y its coefficient of 
polarisability (induced moment per unit field), v the number of 
molecules per c.c., k is Boltzmann's constant, and 2' is the absolute 
temperature. These quantities being supposed known, equations 
(1)-(4) give E for every point in the field ; and then thc definition of 
E as - grad@ gives iD in the form 

. . . .  q ) = = - A m ~ . d r .  * (5) 
It is well known that, i€ powers of P higher than the first are 

deletcd from the development of (4), and (2), (3), and the residue of 
(4) are solved together, the equation for ratio DIE, which is the 
dielectric constant E, may be cxprcssed (Debye) thus : 

where N is the molecular weight and p the density of the solvent, 
whilst N is Avogadro's number. The dielectric constant which 
would obtain in the absence of molecular orientation, may, following 
Maxwell, be expressed as the square of a refractive index, n,, and 
may be connected with y by omitting the p-term from (6) : 

(7) 
n & - 1  M 4xNy  
n;-+S'  p ----- 3 . . . . .  

Thus y may be evaluated provided nm can be identified. There 
appears t o  be some dubiety about the value of nm. In  the case of 
water, some investigators, e.g., Ebert (2. physikal. Chem., 1924,113, 
l),  have adopted Rubens's value, nm = 2.0, obtained from measure- 
ments of refractive index in the far infra-red; others, e.g. ,  Malsch 
(Ann. Physik, 1927,84,841), have used nm = 1.3, the value obtained 
when the refractive index in the visible region is extrapolated to  
infinite wave-length either graphically or by a dispersion formula 
applicable to the visible region. As Debye has pointed out (Zoc. cit.), 
neither method is correct, and the truth must lie between the two 

____ _ -  
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reaulhs : for nm is supposed to be the refractive index for long waves 
due to  all forms of molecular polarisation, but without orientation ; it 
should therefore include an allowance for the dispersion arising from 
atom-polarisation, but it should exclude the dispersion caused by 
molecular rotation. The absorption bands due both to  atom- 
polarisation and to rotation are in the infra-red, and their effects on 
the refractive index are difficult to  distinguish : the higher estimate 
of nm includes both influences and the lower value excludes both. 
For these reasons we reverted to  equation (6) and, applying Jona’s 
data (Physikul. Z., 1919, 20, 14) for the dielectric constant of water 
vapour a t  different temperatures, evaluated y directly. The corre- 
sponding value of nm is 1.51 in accordance with equation (7). This 
method of computation assumes that Lorentz’s law applies t o  
water, which it does approximately ; corrections for the deviations 
from this law are considered later. 

The value of p cannot be similarly obtained from data relating to  
water vapour because the departures from Mosotti’s law are too 
great : association, though it has very little influence on the mean 
contribution of a molecule to the refractive index, has a large effect 
on the dielectric constant because it interferes with independent 
molecular orientation. We have to calculate an effective moment p, 
which is obtained by fitting equation (6) to  data relating to  the liquid 
a t  the required temperature, and even then, as will appear later, p 
has ultimately to  be treated, not as a constant, but as a function of 
density. It will be seen that in adopting this plan (even apart from 
allowances for the density-variation of 7 and p) we are already taking 
account in an approximate way of the main cause of deviation from 
Mosotti’s law. 

The water molecule is anisotropic. In the case of liquids whose 
molecules are not isotropic, Debye’s equation connecting I with F 
takes a more complex form than is presented by (4). Weshallassume 
that the dipole axis and two other directions, all mutually perpen- 
dicular, may be treated as principal axes of polarisability, for which 
the coefficients of polarisability are a, b, and c respectively. This 
supposition may not be strictly accurate owing to  molecular distor- 
tion by an anisotropic environment, but it is shown later that this 
point is immaterial. Under the conditions postulated, the equation 
for I becomes 

where 8 is the angle between the dipole axis of a molecule and the 
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field-direction, 
axis as polar axis, and 

is a longitude in the molecule referred to the same 

j(abc0+) = u cos2 0 + b sin2 0 .  cos2 + + c sin2 0. sin2 + 
One of the three equations necessary for the numerical evaluation 

of the molecular constants a, b, and c is readily obtained : on deleting 
powers of F higher than the first from the development of (8) and 
comparing the result with (6) ,  it is found (Debye, Zoc. cit.) that 

A relation due to Gans (Ann. Physik, 1921, 65, 97) enables two 
other equations to be derived from optical properties. Owing to the 
inertia of the electrons the coefficients, a’, b’, and c’ of optical 
yolarkability are not the same as a, b, and c ;  in other words, the 
optical constants are subject to dispersion and have to be extra- 
polated to large wave-length in order to yield the statical-electrical 
constants a, by and c. 

a + b + c = 3 y .  . . . . . (9) 

Gans’s relation is 

. . .  (10) 
a’ b’ c’ (n2 - l ) / (n2  + 2) 
a b - c - (nt - l ) / ( n t  *+ 2) 

- _ - _ -  -- - 

where n is the refractive index for the wave-length, A, to which 
a’, b’, and c’ apply. 

Prom the theory of light-scattering hy liquids, the depolarisation- 
factor, v, for transversely scattered light is given by the equation 

(11)  
~ M [ ( u ’  - b’)2 + (b’ - c ’ ) ~  + (c’ - ’ = lOkTPNp(a’ + b’+~’)~+7H[ (a’ - b’)2+ (b’- c’)’+ (c ’ -u ’ )~ ]  

where p is the compressibility of the liquid at the temperature and 
pressure at which v is measured. The combination of equations 
(7), (9), and (10) gives 

(12) 
9M n 2 - 1  a’ + b’ + C’ = - ____ 

4xNp’n2+2 * 

and on substituting from (12) in (11) and again taking (10) into 
account. we have 

(13) 
405kTpM n2 - 1  v 

8rc2Np .(n*2) * m v  (a - b)2 + ( b  - c)2 + (c - a)2 = 

According to the theory of electrical double refraction, the 
Kerr constant, B, is given by the equation 

where 
1 0 1- -- , , , , [ ( ~ - b ) ( a ’ - b ’ ) + : ( b - - ~ ) ( b ‘ - ~ ‘ ) +  (c- - ) (c ’ -u’ ) ]  (15) 

and 
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The Kerr constant is, of course, subject to dispersion, and both B 
and the refractive index, n, must correspond with 1. The application 
of equations (10) and (13) to equation (15) shows that 0, has the 
value 

If one of the axes of polarisability is taken as coincident with the 
dipole axis (see above), pa = p and p b  = pc = 0, and, in view of 
(lo), the expression for 0, becomes 

0 - L -  n 2 -  ni - - b - c ) .  . (18) 
- 45PT2' n2 + 2 * nt - 

The remaining equation required for the evaluation of the constants 
a, b, and c is now obtained by combining (14), (17), and (18) : 

Table I contains a number of the numerical values employed in 
these calculations ; the upper portion includes those required for the 
evaluation of the constants of the ellipsoids of statical and optical 
anisotropy, and the derived constants are at  the foot of the table. 
Kerr constants and depolarisation factors have been used separately 
for the calculationof the constants of anisotropy of optically spheroidal 
molecules (e.g., diatomic and linear triatomic molecules), but the case 
of water is more complex and does not appear.previously to have 
been computed. 

TABLE I. 
B = 2-67 x lo-' n = 1.330 v = 0.085 p = 0.7611 X 10-l' 
M= 18.02 nco = 1.510 6 = 45.4 x p = 0,9971 
N = 6.062 x n2 = 1.769 

T = 298.2 n2, = 2.280 E =  78.1 
k = 1-371 X 

Ellipsoid (A)  . . . .. . a'= 1.449 x b'= 1.630 x 10-24 c' = 1.277 x 
Ellipsoid (a) ...... a = 2 .174~10-s4  b = 2 . 3 8 9 ~  c = 1 . 8 7 3 ~ 1 0 - ~ ~  

The influence of anisotropy on the electric field is small (indeed 
over much of the region of the field with which we are concerned it is 
insignificant), and for this reason the question as to whether an 
anisotropic molecular environment would create a finite angle 
between the dipole axis and the corresponding principal axis of 
polarisability is unimportant, as this effect could only make a minute 
change in an already small correction. Furthermore, the circum- 

r = 2.129 x 10-24 ?!= = 15-36 x 10-12 

2 = 46.7 x 10-lo 

aP 

aP 
q = 4.774 x 10-10 h = 7.00 x 10-5 
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stance that molecular anisotropy can be treated as a correction 
greatly simplifies computation from the formulae. For large radial 
distances equation (4) may be replaced by its second approximation 
(20), the influence of anisotropy being neglected altogether : 

For most smaller distances it is sufficient if we employ (4) without 
approximating, and then estimate the correction for anisotropy by 
comparing the results given by the second approximation of (4), 
namely ( 2 0 ) ,  with those derived from the second approximation of 
(8), namely (21) : 

(a - b)2+ (b  - c)2+ (c- a)2 -- 
45kT 

The above, of course, is without prejudice to  the modifications which 
all these equations have still to undergo in order to take account of 
influences yet t o  be considered. 

One of the most important of these arises from the excess of 
internal pressure due to the attraction of the ion for the oriented 
water dipoles. The mechanical force on a dipolar molecule in an 
electric field is given by (m grad) E, where rn is the total moment 
(permanent plus induced) of the molecule (vectors are represented in 
heavy type). Since our electrical field is radial, the only finite 
component of the tensor derived from E is aE&, and hence by the 
definition of the vector gradient of a vector, the direction of the force 
is that of - r and its magnitude is - m,aE,/ar. Since the average 
value of m, is I/v, which, by equation ( 2 ) ,  is ( D  - E)/4xv,  the 
average force on a molecule is -{(D - E ) / 4 x v )  (dE/dr) ,  and the 
force on 1 C.C. is v times this. Hence the excess of internal pressure 
due to the ion is 

dE 
P=----l, 4xr2 dr (D - E )  . __ . 1 "  

=-I q w D - E  dr 
2xr2 7 WE' 7 

the second form of this equation being derived from the first by the 
use of equation (1). 

The pressure near an ion due to its attraction for the solvent may 
amount to  some thousands of atmospheres, and, owing to the com- 
pressibility of the solvent, there will be corresponding changes of 
density. The compressibility of water is known up to about 10,OOU 
atmospheres. If (r is the density expressed as a multiple of that a t  
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low pressure, it follows from the definition of compressibility, 
p = -  (1 /‘V)(dV/dp), where V is the volume occupied by a fixed 
mass, that 

e = e  Jz)p*dp 0 . . . . . . (23) 
Equations (22) and (23) give 0 as a function of r ,  and hence the effect 
of the additional internal pressure is allowed for (except in so far 
as this disturbance interacts with that due to deviations fromMosotti’s 
principle-a point considered below) if in equations (4), (18), (20), 
and (21) we ascribe to v the space-variable value 

v = c N p / M  . . . . . ‘ (24) 
The numerical values of c and p are shown in Table 11. 

10-7 p .  1012 6. 
1 45.3 
2 45.2 
5 45.0 

10 44.1 
20 42-9 
30 41.7 
40 40.6 
50 39-5 

100 35.5 

U.  

1.00045 
1~00090 
1.00225 
1-0045 
1.0089 
1-0133 
1.0175 
1.0215 
1.0410 

TABLE 11. - / -- 
150 32.2 1.058 600 
200 29.5 1.075 660 
250 26.9 1.091 700 
300 24.9 1.106 750 
350 23.1 1.120 800 
400 21.7 1.133 850 
450 20.3 1.145 900 
500 19.1 1.156 950 
650 18.0 1.166 1000 

10-7p. 1 0 1 2 ~ .  u. 10-7p. 
-\ 

I_\- 

1012 p. u. 
17.1 1.177 
16.1 1.186 
15.2 1.196 
14.2 1.203 
13.3 1.211 
12.4 1.219 
11.5 1.226 
10.6 1.233 
9-7 1.240 

Owing to departures from Mosotti’s hypothesis, y and p, which 
a t  first were treated as constants, must also be regarded as functions 
dependent on density and therefore on position. The nature of 
these functions may be deduced to a first approximation from the 
pressure coefficients of the refractive index and the dielectric 
constant. 

In  the absence of molecular orientation, the deviations from 
Mosotti’s assumption are small, and we may therefore assume that 
an,/& is given sufficiently accurately by the known value of 
an/& for sodium light (15.36 x 10-l2). Using this figure in con- 
junction with values p, nm, etc., already tabulated, it can readily be 
shown that the variability which must be attributed to y in order to 
preserve the form of our equations whilst allowing for the deviations 
under consideration is expressed by the relation 

. . . (25) 4 68.88 + 128.0 (C - 1) 
3xvy = 196.9 + 266.0 (c - 1) 

where v is given by (24) and Q by (23). 
The value of aE/ajp being known also, it can be shown in a similar 

way that the density-dependence which must be ascribed to p in 
order to account for the residual departures from Mosotti’s hypothesis 
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in terms of the equations already given is represented by the 
expression 

' ) - - & ~ y  . . (26) ~ X V  77.1 + 177 (C - __ 2 -- 
9N'' - 80.1 + 180 (B - 1) 

where v and y have the values corresponding with equations (24) 
arid (25) respectively, and CJ is given by (23). 

For the purposes of numerical computation, the above equations 
may be grouped as follows : 

Eqns. 

1, 2, 3, 4, 8, 20, 21 Electric vectors Molecular variables 

Mechanical variables 
As it is impossible to eliminateany oneset of variables by mathematical 
methods (e.g., mechanical variables between equations 24-26 
on the one hand, and equations 22,23 on the other), the only way is 
to proceed by the method of successive approximations, the cycle 
being traversed repeatedly until a set of variables is deduced which 
remains the same when the cyclic calculation is performed once 
more; and this must be done for a sufficient number of field-points 
to render interpolation possible. 

The main result of this calculation is to give E as a function of r ,  
and it is then necessary to evaluate the integral in equation (5) 
in order to obtain CD. Runge's process was customarily employed for 
the calculation of definite integrals, but in the present instance the 
slow convergence of the function towards the limit necessitates 
an alternative method for the evaluation of the upper portion of the 
integral. This, however, presents no difficulty because it is precisely 
in this region that the second-approximation equation (20) applies 
with accuracy. 
This equation, on combination with equations (2) and (3), gives 

the relation 

The term in P2 in equation (27) is a small correction and hence may 
be replaced by its first approximation, which is derived by deleting 
from equation (20) the term in F3 and combining the residue of the 
equation with equations (2) and (3). The result is 

F = D  l+%~ 'y+&~}]  . . . (28) ir 3 1  
On eliminating F between equations (27) and (28), solving for E as a 
function of D, developing the function in ascending odd powers of D 
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as far as D3, and replacing D by its equivalent, q/r2, in accordance 
with equation (l), we obtain the relation 

This equation gives E directly, because, in the part of the field for 
which the relation holds accurately, CT may be taken as unity. In 
accordance with equation (5), the equation giving <D in the same 
region of the field is 

When r>12 x 10-8, equations (29) and (30) give results correct 
to three significant figures, and may be used to replace the system of 
equations represented in the cyclic scheme on p. 2186. 

By employing the numerical data contained in Tables I and 11, 
the following values have been computed : 

(i) For r>12 x lo-*, the values of E and @ are given by 

6.112 x 10-l2 
+ r6 r2 

6.112 x 10-l2 1.368 X loA1 
+ r5 r 

(ii) For r<12 x 10-8, the values of p ,  0, E, and <D are as shown in 
Table 111. (It may be noted that, c.g.s. units having been employed 
throughout, the pressure are in dynes/cme2 and require division by 
1.014 x 106 for conversion to atmospheres.) 

In  the applications for which the functions tabulated were com- 
puted, it is necessary to calculate the potential energy, F‘, of a 
second ion, of charge q’, in the field of the first. We know that this 
is the sum of an infinite series of terms diminishing in importance, of 
which the first, and most important, is q’a; we also know that the 
value of each term in the series diminishes with increasing distance 
more rapidly than the one before it. We intend to neglect all terms 
after the first, and it is therefore necessary to investigate the order of 
magnitude of the second term for the distances with which we are 
concerned. The reason why we are forced to neglect the higher 
terms is because there is no known means of evaluating the molecular 
electric constants they contain. Thus the second term is - (m’E), 
where m’ is the effective electric moment (permanent plus in.duced) 

6.839 x loA1 

(31) 
E =  

@ =  
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r x lo8 
(em.). 
2.25 
2.50 
2.75 
3.00 
3-25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5-00 
5-50 
6.00 
6.50 
7-00 
7.50 
8.00 
8.50 
9.00 
9-50 

10.00 
11-00 
12-00 

TABLE 111. . . 
u 

(u = 1, p = 0). 
1.27 
1.20 
1-15 
1.10 
1,067 
1.043 
1.028 
1.019 
1-013 
1.0089 
1-0063 
1.0045 
1.0025 
1.0015 
1-00097 
1.00064 
1.00045 
1.00032 
1-00023 
1.00017 
1.00013 
1~00010 
1-00007 
1*00005 

. . .  
3 

(e.s.u.). 
1-83 x 105 

9.59 x i b 4  
1.33 

6.96 ,) 
5.04 ), 
3.64 )) 

2-65 ,, 
1.96 ,, 
1.46 ,) 
1-11 

6-75 ,) 
4.43 ,) 
3.15 ), 
2-35 ,, 
1.82 ,, 
1.46 ,, 
1.21 ,, 
1.02 

7.67 ,, 
6-76 ,, 
5.40 ,, 
4.44 )) 

8-63 x ib3  

8.80 x ib 

. .  (32) 

1-55 x 10-3 

@ 
(e.s.u.). 

8.78 x ib-4 1-16 

6.73 ,, 
5.24 ), 
4.17 ), 
3.39 ,, 
2.83 ,, 
2.40 ,, 
2.08 ,, 
1.83 ,, 
1-65 ,, 
1.38 ), 
1.19 ,) 
1.06 
9.52 x l'b-5 
8.71 ,) 
8.04 ,, 
7.49 ,, 
7.01 ), 
6-61 ,, 
6-24 ,, 
5-64 ), 
5.15 ,, 

of the ion and the parentheses denote a scalar product ; but we know 
nothing about the permanent part of this moment, which is sure to 
be the greater portion of it in the case of such ions as OH,@ and 
OH@ which are the centre of our interest at present. However, 
on the assumption that the dipole moments of the hydrogen and 
hydroxide ions are not very different from that of water (just as the 
moments of chloroform and methyl chloride are not very different 
from that of methylene chloride) it is possible t o  calculate the order 
of magnitude of - (m'E>;, and of its effective mean value having 
regard to the statistical distribution of the orientations of the 
dipole axes, and thus to show that the effect of this energy term is 
negligible except at very short distance ; at which, in the applicQtions 
for which these calculations are intended, our computed results cannot 
in any case be expected to correspond to reality because of the 
neglect of internal polar transmission in the ion responsible for 
the electric field. 

Besides these electrostatic contributions, q'@ - (m'E) + . . . 
etc., to  the energy (the bar denotes an average), there is also a 
mechanical contribution due to the non-uniformity of the pressure- 
field. This is also expressible as the sum of an infinite series of terms 
of progressively diminishing importance and increasing rate of 
diminution with increasing distance. It is necessary to investigate 
the order of magnitude of the first term of this series, The value of 
the first term is + (m&) Y ' I - V W ,  where mw is the effective electric 
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moment (permanent plus induced) of a water molecule, and the 
coefficient of the scalar product is the ratio of the molecular volumes 
of the ion and of water. This term is obviously of the same order 
of magnitude as the second term of the series of electrostatic contri- 
butions, and for the same reasons may be neglected for the present 
purposes. A fortiori, the combination of terms, - (m‘E) + 
(m&) V’/ V v ,  may be disregarded, because the constituents are 
always, arithmetically as well as algebraically, of opposite sign. 

There is experimental confirmation of this conclusion in the 
applications, described in the accompanying communications, to the 
electrolytic equilibria of acids and to  the dynamics of the saponifica- 
tion of esters. The formula 

r 4%) - (a)+ . . . . + ( m v E ) V / V w -  . . (33) 
has connexion with both problems; but there is this difference 
in its numerical equivalent in the two cases, namely, that the 
relations of the signs (like or unlike) of the values of the second and 
third of the fully expressed terms on the right-hand side of (33) to the 
sign of the value of the first term are opposite. Therefore the neglect 
of the second and third terms would be expected to introduce a 
positive error in one problem and a negative error in the other, and, 
if these terms were not small relatively to the first term, correspond- 
ing values of r calculated by the two methods should be different. 
On the contrary, it is shown that in every case in which the compari- 
son is pertinent (i.e., excluding very short distances) the results are 
the same. 

Pinally, it should be pointed out that a, and the vectors and 
tensors derived from it, are also expressible as infinite series of which 
we have only considered the first term. No further consideration 
need be given to E since this occurs only in the negligible terms of 
(33) ; @, however, has the form 

@ = $(v) 3- $1(m,r) + ’ - (34) 
and the values we have formulated and tabulated in (31) and 
(32) as values of CD are really values of $ ( q , ~ ) .  The order of magni- 
tude of the second term on the right-hand side of (34) therefore 
requires examination. It is not difficult to show that if m, the 
moment of the ion responsibIe for the field, is of the same order of 
magnitude as m’ (and this would almost certainly be true in the cases 
with which we are immediately concerned), then q’$l(m,r) is of the 
same order of magnitude as (m’E) ; that is, it is negligible except 
at very short distances at which, in our applications, internal polar 
disturbances inevitably enter. Indeed, it is obvious that the calcul- 
ation of the second and following terms on the right-hand side of 
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(34), and of the second and later terms on the right-hand side of 
(33), and the evaluation of the interaction of these two sets of terms 
with each other and the primary terms, are all parts of the problem 
taking theoretical account of internal polar transmission. 

The result of this investigation into the order of magnitude of the 
higher terms in (33) and (34) is, then, that beyond the range of 
effects due to internal polar propagation, the mutual potential energy 
of two ions may be computed from the expression 

where $ has the values attributed to iD in (31) and (32). 
w = q’IJ(q,r) . . . . . . (35) 
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